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ON THE INTERPRETATION OF SHADOW—MOIRE FRiNGES

by

J. Buitrago and A. J. Durelli

ABSTRACT

Shadow—moire is presented as one of several means of determining

loci of constant height in curved surfaces (isotathmics). A general

expression to interpret the fringes is derived taking into consideration

possible rotations and translation of the grating. A discussion of the

influence of such rotations and translation on the sensitivity of the

response is also presented. Furthermore, simplified equations are

obtained for particular cases of practical interest. An example of

application to the case of an inverted perforated tube is shown.
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ON THE INTERPRETATION OF SHADOW-MOIRE FRINGES

by

J. Buitrago and A. J. Durelli

Introduction

The solution of the problem of determining topographical contours of

• an arbitrary surface can be approached using optical methods. Different

techniques can be used depending on the actual depth of the surface, its

size and desired sensitivIty. Newton rings have a sensitivity of the order

on one tenth of the wave length used, but only for a very small range of

depth. Holographic interferometry is useful when the depths to record are

also very small, is subjected to strict requirements of stability of the

instr~~entation and is usually expensive.

The simplest method seems to be the projection—grating moire whereby

one projects a grating onto the surface of a plate before deformation and

then again af ter defor ation~~
) (2 3)

. The superposition of the deformed

and undeforned grating images, when the projection is a parallel one,

yields moir4 fringes of equal deflection (isothetics w). The method can be

applied to surfaces which are originally curved and may then give the isotatn—

mics or loci of equal depth (or height) with respect to a plane of reference.

• Projection moire is suitable for relatively large deflectious (0.1 mm and up) .

Shadow—moire fringes are produced when the master placed in front of

the model interferes with its shadow on the surface of the model. Only one

grating is required instead of the two used with the projection grating



method and the surface of the model should be matte in order to receive the

shadow of the projected grating.

Shadow—moire, like the projection—grating method, does not require

coherent light and is also of simple implementation. The shadow—moire

patterns may also be isothetics w, (for the case of bent plates for

instance) or isostathmics when the observed surface is not originally

plane, the fringe pattern giving then the map of the heigh t of points of

the surface with respect to the reference plane.

Weller and Shepard~
4’ were the first to suggest the use of shadow—moire

to determine loci of depth on surfaces. Later Theocaris~
5
~ used the method

to measure deflections of flexed plates. Theocaris~
6
~ also generated

isopachics by shadow—moire that in combination with isochromatics were used

• to separate principal stresses. Successful app lications, of shadow—moire

techniques to the determination of living bodies topography have been

• . (7 ,8) . (9)
• reported by Takasaki . Recently , Chiang proposed the uses of a

composite grating with two different  pitches and Marasco~~
0
~ obtained

displacements in a hyperboloid—parabolic shell with a non—plane

grating.

Interpretation of Shadow—Moira Fring~s

• Shadow—moire fringes can be mathematically interpreted by using

communication theory
(fl

~
12) although geometric optics suffices to

completely analyze the phenomenon.

• A geometric approach to the interpretation of shadow—moire

fringes has been published by Pirodda~
13
~ . However, the author did

—2—
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not consider the effect  of rotations of the grating. In wha t follows

a completely general analysis of the shadow—moir& fringes is given

including consideration of positions of the grating that require

rotat ions and translation from the normal position defined as the

position at which the grating is in contact with the body and is

norma]. to axis of the camera. The influence of these motions on the

sensitivity of the system is also considered.

General Equation: Defining the 3—1) space by a Cartesian system of

coordinates x, y and z , consider any ~lane x—y where a grating of

pitch p has been translated from the model a distance c and then

rotated an angle 9 , (Fig. 1). The fringe order at an arbitrary

point P (x) can be expressed as:

(w+~+x tan 81) ( ( d +d1) tan
• n •

~~~~ 

d+d~+w+C 
cos

r(d +d ) tarl c~—xx z i  -l x
+ d +w4.~ ~~~ 91

4sin 
~lL d +d ~~~~~~~~~ 

tan 
~~~~ 

tan dz z 1 z

(d tan n—x
+ d +w4.c tan (Carl 

d •4•d
1
+w+C 

.
~~ a 1)]} (1)

If the grating is further  rotated in the plan e y—z (Fig. 2) by an angle

9 7 and in the plane z—x by an ang le 
~~ 

(Fig. 3) Eq. (1) can be made to

represent the most genera]. expression for the fringe order at a poin t

when p/cos 8~ is substituted for  p and d — ( h — z ) s i n  e 2 for  d
~ 

where h is

the total height of the model. Equation (1) can also be ‘writ ten in terms

of the total distance from the grating to the model by letting

+ x tan~ 1~ A detailed derivation of Eq. ( 1) is presented i~

the Appendix.

An explicit solution of E q. ( 1) for  either w or w~ does not  seem

~~~ easy to obtain. However , it is possible to solve it numerIcally by

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . •~~ • • . - • • - •• . • ••
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redefining it in terms of functions of w or and combining them

into the form F1(w ,n) = F2 (w) that can be solved by a trial and error

algorithm.

Influence of Rotations and Translation on the Sensitivity :~ In practical

cases it is convenient to position the camera and light source

sufficiently far from the model so that d
~ 

is very large compared to

(w + c) and to x and consequently y~c~ and 4~~O. Under these conditions

it is possib le to explicitly show the influence of the rotations as

well as the translation of the grat ing p lane on the sensitivity of the

response of the system . The sensitivity can be quantified as the ratio

of the fringe order at a point to its actual distance to the gra t ing

(Fig . 1).

a) Rotation ~~~~~ the z axis : Letting 0 2 = $
3 

= 0 Eq. (1) reduces to

1 (w + c + x tan 
~~~ 

( tana ~os0 1 + sin01 tann tan0 1)

therefore the sensitivity

s~ = n/w e = I tan a sec (2 )

By examining Eq. ( 2 ) ,  i t  is seen that  for  a given depth and p itch the

sensitivity varies as the secan t of the rotation $~~~~ . From 0 to 20

• degrees , the sensitivity increases only 6% but  reaches 41% for

equal to 45° . However , large values of 8
~ 

bring the grat ing plane

fur ther  apart fr om the model producing the fading of the fringes .

The increase in sensitivity has to be compromised wi th the quality of

the f r inges .

— 4 —

_ _ _ _ _ _ _ _ _  
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b) Rotation about x axis : Letting 01 ~2 
= 0 , Eq. (1) become s

1 
(d +d1)tan a—x 1

o d -Fd
1+w+c = — tan a (3)

Since tan a = f / ( d
~ 

+ d1) and d~ 
= d — ( h - z ) s i n  02 the sensitivity is

given by

1 f (4)x 
~ 

d—(h—z ) sin

If d ~ (h—a ) the change in sensitivity obtained by rotating the grating

plane about the x axis is neglible.

c) Rotation about y axis : Letting e~ = = 0 in Eq. (1) gives

= I cos 0~ tan a (5)

• In this instance the sensitivity is proportional to the cosine of the

angle of rotation. As 0 3 approaches 90° the pitch become s very large

(p ’ = p/cos 6 3) and the fringes fade. The sensitivity decreases as

83 increases.

d) Rigid translation in the x—y plane; In this case = 0 2 = 0 3 0

and the sensitivity is expressed by

(6)

Translation of the grating plane does not bring about any change in the

sensitivity but as in case a) will tend to produce weaker fringes.

Translation of the grating plane is of no practical interest .

Simplified Equations: Three cases of practical importance , determined

by the number of elements used in the system will be considered. The



grating will touch the body and its plane will be perpendicular to the

axis of the camera.

a) Point source and camera: In Eq. (1) let 81 
6
2 

6
3 

= c~O (Fig. 4)

The distance d
~ 

becomes constant and the fringe order at representative

points 1 and 2 is given by

d+d )tan a - xw 1 x• n = _ [ ( 
+ ] (7)

1, 2 p d + d 1 + w  d + w

It can be noted from Eq. (7) that if the body has a plane of symmetry

• coinciding with the y — z plane , the fringe pattern will not be symmetric

because of the sign of x. In practice the zero frin!e order is arbitrarily

• assigned to the point of contact between the grating and the surfaces.

Knowing the fr inge order, the grating pitch and the geometry of the optical

• system , Eq. (7) can be solved for  w as follows

(8)
2 — 4  tga

where

d((d+d1) tga — x — np]—np(d+d1) + x (d+d1)
(d+d

1) tgcz 
— np

ç The + or — sign in Eq. (8) is selected to obtain the desired sign

for w. Eq. (8) is valid for any z.

A case of practical importance occurs when the source and the camera

focusing plane lay on a plane that is parallel to the grating plane.

Letting d1 
0 in Eq. (7) the fringe order is given by

n ,, w (
dtga-x~~~~x ], dtga 

~~
• (9)

1,2 p d+w d+w d+w p

It can be observed from this expression that the fringe pattern will be

symmetric with respec t to x if the body is symmetric with respect to z.

• Substituting now tana by f / a , the displacement w is given by

- _~~~~~~~~~~~ • ~~• ~~~~~~~~~~~~~~
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(10)
f—np

b) Collimated incident light and camera: If in the previous set—up a

collimator is added between the source and the grating Fig. (5) the object

receives incident parallel rays of light. This is equivalent to locating

the source at an infinite distance from the object. Taking the limit of

Eq. (7), as d1 approaches infinity, the fringe order is given by

n1 2  m (tga + (11)

Again the pattern corresponding to a symmetric body will not be symmetric

because of the sign of x. Solving for w in Eq. (11)

w~ ’-
1k -/1k

2
+~~~~ (12)

• 2 1  4 1  tgct

where

k 
d - n p + x

1 tga

c) Collimated incident and reflected light: This condition can be

obtained by inserting another collimator , this one between the grating and

the camera as depicted in Fig. (6). In this instance the fringe order can

be arrived at by letting d1 + d go to infinity in Eq. (7). Then

— tga

thus (13)

tga

Experimental Considerations

Set up: Of the simplified cases presented above, the last one seems to

be the most attractive because of the simplicity of Eq. (13). Unfortunately,

as the bodies grow larger, wider c•llimated beams are required , which in



turn implies larger diameter lenses. When of good quality , these lenses

are difficult to obta4.n at a reasonable cost.

• 
• The use of a point source of light and a camera appears to have

practical advantages although the analysis of the pattern is more compli-

cated (Eq. 8). However, a simplified expression can be obtained when the

• source and camera are on a plane parallel to the grating (Eq. 10). This

three element system (source, grating and camera) is frequently the most

advantageous.

Sensitivity: The sensitivity of the method is a direct function of the

pitch of the grating and the angle of observation. Very small pitches

cannot be used because the very fine gratings diffract the light. The

The appropriate pitch and angle of observation have to be selected for the

• 
• 

particular range of heights to be measured.

Fringe Definition: When coarse gratings are used , it is advantageous to

have a thin light source parallel to the direction of the grating lines to

• • minimize the penumbra. The thinner the source the sharper the fringes.

• It should be remembered that shadow—moire fringes are formed at planes

• I located at different distances from the grating plane and should be

photographed using small diaphratn apertures. When the bodies to be studied

1~. have a plane of symmel:ry, it i~s advisable to use two light sources symmet—

rically located with respect to the camera axis to avoid that the fringes

that appear on the side near one source of light present different

intensity than the fringes at the opposite side.

Fringe definition may also be lost at areas at which the gradients are

steep. In these cases it is recommended to move the grating during the •

(6 ,11)exposure .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Sources: White light sources of about 500 to 1000 watts are usually

required to generate proper intensity. Incandescent filament lamps are

most commonly used and the filament is then aligned with the grating lines.

To sharpen the fringes illumination can be passed through a slit, but this

decreases the intensity.

Application

To experimentally verify some of the previously developed equations,

• a sphere 6.9 in (175 mm) in diameter was analyzed. For convenience, the

selected set—up consisted of a point light source and a camera laying on

a plane parallel to the grating. The fringe pattern shown in Fig. 7 is

symmetric as predicted by Eq. (9) for symmetric surfaces. Surface depths

referred to the grating plane (tangent to the sphere) were computed using

• Eq. (10) and compared to the values obtained from geometry. Fig. 8 shows

this comparison. The agreement is very good.

As a more general application of the shadow—moir~ technique, the

• antinlastic surface of a perforated tube, turned inside out was also

studied (Fig. 9). The optical arrangement consisted of collimated incident

light and camera. In this instance, even though the surface is symmetric

with respect to x , the fringe order is not (Fig . 10) in accordance with

Eq. (11), where the alternate sign of x for two points symmetrically

• located about the vertical axis yields different values af n. To further

illustrate this effect , the fringe order n has been represented along three

different lines on the surface of the tube. On the vertical axis, where

x = 0, the fringe distribution exhibits complete symmetry. However, for  any

other off—the—vertical—axis line asymmetry appears , reaching a maximum

along the horizontal axis. The actual depths , on the other hand , have to

remain symmetric and can be obtained using Eq. (12).
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APPENDIX: General Equation for Interpretation of Shadow—MoirC

~~~~~Ref erring to Fig. 1, consider the grating plane that has been translated

along the y axis an amount c from the highest point on an arbitrary surface S

and subsequently rotated through an angle 8
~
, about the z axis (positive

rotation according to the vectorial product convention). The fringe order

corresponding to the interference of the shadow cas t at the point P and the

grating itseLf is simply,

a a a ’/p (A. l)

a ’ being the dis tance measured on the grating plane between the incident and

ref lect ed rays , and p the pitch of the grating. Since only one grating is

used, dark areas of the grating interfere with their own shadows and conse-

quently the integer fringe orders correspond to light fringes while the half

orders to dark fringes~~
4
~ (Fig. 7) -

• From geometry it is seen that -

a ’ [(a 1+a2) cos81 + e + g)]/p (A.2)

where

a (w+c4% tane1) ( r.any + tan$ ) (A. 3)

e a a2 sine 1tan(e 1—~ ) — (w+c+x tanO 1)t a rry sin8 1tan (8 1— $) (A .4)

and

1 g a a1 sin81tan(81+y) a 
~w~~-hc tan61

) tan~sin81tan(814-~) ~A.5)

y and ~ are the angles the incident and the reflected rays make with the

normal to the contacting normal pos ition of the grating plane respectively and

w the depth of the point P from that position.

• Equations (A.3)., (A. 4) and (A .5) are now substituted into Eq. (A.2) .

Af ter collecting terms a ’ is

a ’ a (w+c+x

f— xtan’I’ - 

~~+d
1~
i+c (A. 7)
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and

ncb — _____  
(A. 8)

d +w+c• z

where d
~ 

is the variable dis tance between the camera and the grating plane

• for  the different x constant planes as produced by the rotation of the grating

about the x axis. According to Fig. 2, d
~ 

can be expressed as

• d = d — (h—z)sin0 2 
(A.9)

h representing the total height of the model and d the constant distant

between the camera and the original position of the grating. Moreover ,

the distance f between the camera optical axis and the point light source is

f (d + d1)t ana (A. lO)

~ is referred to as the illumination angle and d1 is the distance between

the camera and the source measured along the axis of the camera.

Using the expressions for  d .  and f in(A .7) and(A.8) , the tangents of

y and ~ are then given by

[d— (h— z)sin0 +d ]tanc& (A.ll)tan.y 2 1
• d— (h—z)sin0 2+d1#w+c

tan~ (A.12)d— (h—z)sin0 24w+c

Now, eliminating the tany and tan4 from(A .6)using (A .ll)and (A.12) , and dividing

through by the pitch modified by the grating rotation 0 3 (Fig. 3) about y ,

the fringe order as determined by Eq. (A.l)finally is obtained as

F . (w+c+x tanO,)5,. <d— (h—z)s in82+d,> tanc~ — x
] cos0

• pcose 3 d— (h—z)sin0 2+d1#w#c d— (h—z)sin0 2+w+c 1

• <d— (h—z ) sine +d >tana—x
+ sin 01[ d-(h—z)sine 2+d1+w+c tan(9 l

_tan d_ ( h_ z)sj ne 4w.1.c )

<d— (h—z)sin8 +d >tanct - x +8 ) ] }
+ d-(h-z)sin0 2+w+c tan(tan~~ d-(h-a)sin0 2+d 14w+c 

1 ( Ai,3)
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It can be concluded, therefore, that the most general interpretation of the

shadow moire fringe order at any point on an arbitrary surface can completely

be defined in terms of the geometry of the optical system lay—out and the

rotations and translation of the grating plane. Translations perpendicular

to the camera axis do not a f fec t  the f r inge value .

A-3
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w=npd/(f-np)

Fig. 7 lsostath mics of a Spherica l Surface Obtained Using
Shadow -Moire. Camera and Light Source on a Plane
Parallel to the &rating
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